CRISPR genome editing has foreseeable implications for plastic and reconstructive surgery
The CRISPR genome editing technique promises to be a “transformative leap” in genetic engineering and therapy, affecting almost every area of medicine. That includes plastic surgery, with potential advances ranging from prevention of craniofacial malformations, to therapeutic skin grafts, to new types of rejection-free transplants.
CRISPR Has Implications for Congenital Malformations, Wound Healing, Transplantation and More
CRISPR – the abbreviation stands for “clustered regularly interspaced short palindromic repeats” – was discovered as an adaptive immune mechanism in bacteria. Before the development of CRISPR techniques, gene editing was labor intensive and limited to laboratories with advanced molecular biology tools.
CRISPR gene editing is revolutionizing the potential of gene therapy due to its simplicity, specificity, efficiency, low cost, and versatility. Potential applications of CRISPR are numerous and will certainly impact plastic and reconstructive surgery.
Some key areas where CRISPR has foreseeable implications for plastic surgery, including:
- Craniofacial Malformations. Basic science studies using CRISPR techniques have already led to new insights into craniofacial developmental pathways. CRISPR enables quick identification of individual gene mutations, and may one day lead to the ability to correct mutations and prevent the development of cleft lip, cleft palate, and other congenital malformations.
- Wound Healing and Tissue Repair. Gene therapy is a promising approach to enhancing wound and tissue healing. In addition to accelerated healing of skin wounds, CRISPR may lead to new approaches for repair and regeneration of bone, cartilage, nerve, and muscle.
- Cell Therapy and Tissue Engineering. Genetic techniques may enable the creation or modification of the patient’s own (autologous) cells to graft or replace damaged tissues, stimulate cell development, or modulate immune functions.
- Flap Biology and Transplants. In addition to modifying tissue flaps, gene editing with CRISPR may make it possible to reprogram vascularized composite allotransplants – such as face or hand transplants – to promote tolerance and prevent rejection by the recipient’s immune system. Similar immune modulation approaches might also promote tolerance of tissues from animal donors (xenotransplantation).